English

Solve the Following Equation: 2 Sin 2 X = 3 Cos X , 0 ≤ X ≤ 2 π - Mathematics

Advertisements
Advertisements

Question

Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]

Sum

Solution

\[2 \sin^2 x = 3\cos x\]
\[ \Rightarrow 2\left( 1 - \cos^2 x \right) = 3\cos x\]
\[ \Rightarrow 2 \cos^2 x + 3\cos x - 2 = 0\]
\[ \Rightarrow \left( 2\cos x - 1 \right)\left( \cos x + 2 \right) = 0\]
\[\Rightarrow \cos x = \frac{1}{2} \text{ or }\cos x = - 2\]
But,
\[\cos x = - 2\]  is not possible.

\[\left( - 1 \leq \cos x \leq 1 \right)\]
`therefore cosx=1/2=cos  pi/3`
`=>x=2npi+-pi/3,nin Z`
Putting n = 0 and n = 1, we get
\[x = \frac{\pi}{3}, \frac{5\pi}{3} \left( 0 \leq x \leq 2\pi \right)\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 7.2 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation sec x = 2


Find the general solution for each of the following equations sec2 2x = 1– tan 2x


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that  \[ab + a - b + 1 = 0\]


If \[T_n = \sin^n x + \cos^n x\], prove that  \[2 T_6 - 3 T_4 + 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{\sin(180^\circ + x) \cos(90^\circ + x) \tan(270^\circ - x) \cot(360^\circ - x)}{\sin(360^\circ - x) \cos(360^\circ + x) cosec( - x) \sin(270^\circ + x)} = 1\]

 


Prove that

\[\left\{ 1 + \cot x - \sec\left( \frac{\pi}{2} + x \right) \right\}\left\{ 1 + \cot x + \sec\left( \frac{\pi}{2} + x \right) \right\} = 2\cot x\]

 


In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:

\[\tan\frac{5\pi}{4}\cot\frac{9\pi}{4} + \tan\frac{17\pi}{4}\cot\frac{15\pi}{4} = 0\]

 


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Solve the following equation:

\[4 \sin^2 x - 8 \cos x + 1 = 0\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\cos x + \sin x = \cos 2x + \sin 2x\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0 


Solve the following equation:
 cosx + sin x = cos 2x + sin 2x

 


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Solve the following equation:
3sin2x – 5 sin x cos x + 8 cos2 x = 2


Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]


The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval


Find the principal solution and general solution of the following:
cot θ = `sqrt(3)`


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
sin 5x − sin x = cos 3


Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ


Solve the following equations:
cot θ + cosec θ = `sqrt(3)`


Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×