Advertisements
Advertisements
Question
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solution
\[4 \sin x \cos x + 2 \sin x + 2 \cos x + 1 = 0\]
\[ \Rightarrow 2 \sin x\left( 2 \cos x + 1 \right) + 1\left( 2 \cos x + 1 \right) = 0\]
\[ \Rightarrow \left( 2 \sin x + 1 \right)\left( 2 \cos x + 1 \right) = 0\]
\[ \Rightarrow 2 \sin x + 1 = 0\text{ or }2 \cos x + 1 = 0\]
\[ \Rightarrow \sin x = - \frac{1}{2} \text{ or }\cos x = - \frac{1}{2}\]
\[ \Rightarrow \sin x = \sin\frac{7\pi}{6}\text{ or }\cos x = \frac{2\pi}{3}\]
\[ \Rightarrow x = n\pi + \left( - 1 \right)^n \frac{7\pi}{6}\text{ or }x = 2n\pi \pm \frac{2\pi}{3}, n \in \mathbb{Z}\]
APPEARS IN
RELATED QUESTIONS
Find the general solution of the equation cos 4 x = cos 2 x
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
Prove that:
Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
Prove that:
Prove that
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
Which of the following is correct?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[\cot x + \tan x = 2\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of points of intersection of the curves
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
cos 2x = 1 − 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
cot θ + cosec θ = `sqrt(3)`
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.