English

Find the General Solution of the Following Equation: Sec X = √ 2 - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the following equation:

\[\sec x = \sqrt{2}\]
Sum

Solution

We have:
\[\sec x = \sqrt{2}\] (or) 

\[\cos x = \frac{1}{\sqrt{2}}\]
The value of x satisfying \[\cos x = \frac{1}{\sqrt{2}}\] is \[\frac{\pi}{4}\]
∴ \[\cos x = \frac{1}{\sqrt{2}}\]
⇒ \[\cos x = \cos \frac{\pi}{4}\]
⇒ \[x = 2n\pi \pm \frac{\pi}{4}\],
\[n \in Z\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 1.4 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the principal and general solutions of the equation `tan x = sqrt3`


Find the principal and general solutions of the equation  `cot x = -sqrt3`


Find the general solution of the equation sin 2x + cos x = 0


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]

 


Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that: tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

\[\sec^2 x = \frac{4xy}{(x + y )^2}\] is true if and only if

 


sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =


If tan A + cot A = 4, then tan4 A + cot4 A is equal to


If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.


Write the set of values of a for which the equation

\[\sqrt{3} \sin x - \cos x = a\] has no solution.

If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is 


General solution of \[\tan 5 x = \cot 2 x\] is


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×