English

If Secx Cos5x + 1 = 0, Where 0 < X ≤ π 2 , Find the Value of X. - Mathematics

Advertisements
Advertisements

Question

If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.

Sum

Solution

The given equation is secx cos5x + 1 = 0.
Now,
\[\sec x\cos5x + 1 = 0\]
\[ \Rightarrow \frac{\cos5x}{\cos x} + 1 = 0\]
\[ \Rightarrow \cos5x + \cos x = 0\]
\[ \Rightarrow 2\cos3x \cos2x = 0\]
\[\Rightarrow \cos3x = 0\text{ or }\cos2x = 0\]
\[ \Rightarrow 3x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\text{ or }2x = \left( 2m + 1 \right)\frac{\pi}{2}, m \in Z\]
\[ \Rightarrow x = \left( 2n + 1 \right)\frac{\pi}{6}\text{ or }x = \left( 2m + 1 \right)\frac{\pi}{4}\]
Putting n = 0 and n = 1, we get
\[x = \frac{\pi}{6}, \frac{\pi}{2} \left( 0 < x \leq \frac{\pi}{2} \right)\]
Also, putting m = 0, we get \[x = \frac{\pi}{4} \left( 0 < x \leq \frac{\pi}{2} \right)\]
Hence, the values of x are \[\frac{\pi}{6}, \frac{\pi}{4}\] and \[\frac{\pi}{2}\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric equations - Exercise 11.1 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 11 Trigonometric equations
Exercise 11.1 | Q 13 | Page 22

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the general solution of the equation cos 4 x = cos 2 x


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]


Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Prove that:cos 570° sin 510° + sin (−330°) cos (−390°) = 0

 


Prove that:

\[3\sin\frac{\pi}{6}\sec\frac{\pi}{3} - 4\sin\frac{5\pi}{6}\cot\frac{\pi}{4} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]

 

In a ∆ABC, prove that:
cos (A + B) + cos C = 0


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]


\[\sqrt{\frac{1 + \cos x}{1 - \cos x}}\] is equal to

 


If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is

 

If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[\sin 9x = \sin x\]

Find the general solution of the following equation:

\[\sin 2x = \cos 3x\]

Find the general solution of the following equation:

\[\tan 3x = \cot x\]

Solve the following equation:

\[2 \cos^2 x - 5 \cos x + 2 = 0\]

Solve the following equation:

\[\sin x + \sin 5x = \sin 3x\]

Solve the following equation:

\[\sin 2x - \sin 4x + \sin 6x = 0\]

Solve the following equation:

\[\sqrt{3} \cos x + \sin x = 1\]


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
 sin x tan x – 1 = tan x – sin x

 


Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

Write the solution set of the equation 

\[\left( 2 \cos x + 1 \right) \left( 4 \cos x + 5 \right) = 0\] in the interval [0, 2π].

If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.


If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]

 


If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

sin4x = sin2x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

2 cos2x + 1 = – 3 cos x


Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°

cos 2x = 1 − 3 sin x


Solve the following equations:
2 cos2θ + 3 sin θ – 3 = θ


Solve the following equations:
sin θ + cos θ = `sqrt(2)`


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×