Advertisements
Advertisements
Question
Write the solution set of the equation
Solution
Given:
\[(2 \cos x + 1) ( 4 \cos x + 5) = 0\]
Now,
\[2 \cos x + 1 = 0\] or \[4 \cos x + 5 = 0\]
Thus, we have:
\[\cos x = - \frac{1}{2} \]
\[ \Rightarrow \cos x = \cos\frac{2\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{2\pi}{3}\]
By putting n = 0 and n = 1 in the above equation, we get:
For the other value of n, x will not satisfy the given condition.
∴ \[\left[ 0, 2\pi \right]\] and \[\frac{4\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation sec x = 2
Find the general solution of the equation cos 3x + cos x – cos 2x = 0
Find the general solution of the equation sin 2x + cos x = 0
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3tanx + cot x = 5 cosec x
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
If secx cos5x + 1 = 0, where \[0 < x \leq \frac{\pi}{2}\], find the value of x.
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the set of values of a for which the equation
Write the values of x in [0, π] for which \[\sin 2x, \frac{1}{2}\]
and cos 2x are in A.P.
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The smallest positive angle which satisfies the equation
If \[\cot x - \tan x = \sec x\], then, x is equal to
General solution of \[\tan 5 x = \cot 2 x\] is
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
The minimum value of 3cosx + 4sinx + 8 is ______.