Advertisements
Advertisements
Question
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Solution
LHS = \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4}cose c^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6}\]
\[ = \tan\left( \frac{11\pi}{3} \right) - 2\sin\left( \frac{4\pi}{6} \right) - \frac{3}{4} \left[ cosec\left( \frac{\pi}{4} \right) \right]^2 + 4 \left[ \cos\left( \frac{17\pi}{6} \right) \right]^2 \]
\[ = \tan\left( \frac{11}{3} \times 180^\circ \right) - 2\sin\left( \frac{4}{6} \times 180^\circ \right) - \frac{3}{4} \left[ cosec\left( \frac{180^\circ}{4} \right) \right]^2 + 4 \left[ \cos\left( \frac{17 \times 180^\circ}{6} \right) \right]^2 \]
\[ = \tan \left( 660^\circ \right) - 2\sin \left( 120^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos \left( 510^\circ \right) \right]^2 \]
\[ = \tan \left( 660^\circ \right) - 2\sin \left( 120^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos \left( 510^\circ \right) \right]^2 \]
\[ = \tan \left( 90^\circ \times 7 + 30^\circ \right) - 2\sin \left( 90^\circ \times 1 + 30^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos\left( 90^\circ \times 5 + 60^\circ \right) \right]^2 \]
\[ = \left[ - \cot \left( 30^\circ \right) \right] - \left[ 2\cos \left( 30^\circ \right) \right] - \frac{3}{4} \left[ cosec \left( 45^\circ \right) \right]^2 + 4 \left[ - \sin\left( 60^\circ \right) \right]^2 \]
\[ = - \cot \left( 30^\circ \right)-2\cos\left( 30^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \sin \left( 60^\circ \right) \right]^2 \]
\[ = - \sqrt{3}-\frac{2\sqrt{3}}{2} - \frac{3}{4} \left[ \sqrt{2} \right]^2 + 4 \left[ \frac{\sqrt{3}}{2} \right]^2 \]
\[ = - \sqrt{3} - \sqrt{3} - \frac{3}{2} + 3\]
\[ = \frac{3 - 4\sqrt{3}}{2}\]
= RHS
Hence proved .
APPEARS IN
RELATED QUESTIONS
Find the principal and general solutions of the equation `cot x = -sqrt3`
Find the general solution of the equation sin x + sin 3x + sin 5x = 0
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[a = \sec x - \tan x \text{ and }b = cosec x + \cot x\], then shown that \[ab + a - b + 1 = 0\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that
In a ∆ABC, prove that:
Find x from the following equations:
\[x \cot\left( \frac{\pi}{2} + \theta \right) + \tan\left( \frac{\pi}{2} + \theta \right)\sin \theta + cosec\left( \frac{\pi}{2} + \theta \right) = 0\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If tan x = \[x - \frac{1}{4x}\], then sec x − tan x is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
Which of the following is incorrect?
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
The smallest value of x satisfying the equation
If a is any real number, the number of roots of \[\cot x - \tan x = a\] in the first quadrant is (are).
General solution of \[\tan 5 x = \cot 2 x\] is
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0