Advertisements
Advertisements
प्रश्न
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
उत्तर
LHS = \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4}cose c^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6}\]
\[ = \tan\left( \frac{11\pi}{3} \right) - 2\sin\left( \frac{4\pi}{6} \right) - \frac{3}{4} \left[ cosec\left( \frac{\pi}{4} \right) \right]^2 + 4 \left[ \cos\left( \frac{17\pi}{6} \right) \right]^2 \]
\[ = \tan\left( \frac{11}{3} \times 180^\circ \right) - 2\sin\left( \frac{4}{6} \times 180^\circ \right) - \frac{3}{4} \left[ cosec\left( \frac{180^\circ}{4} \right) \right]^2 + 4 \left[ \cos\left( \frac{17 \times 180^\circ}{6} \right) \right]^2 \]
\[ = \tan \left( 660^\circ \right) - 2\sin \left( 120^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos \left( 510^\circ \right) \right]^2 \]
\[ = \tan \left( 660^\circ \right) - 2\sin \left( 120^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos \left( 510^\circ \right) \right]^2 \]
\[ = \tan \left( 90^\circ \times 7 + 30^\circ \right) - 2\sin \left( 90^\circ \times 1 + 30^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos\left( 90^\circ \times 5 + 60^\circ \right) \right]^2 \]
\[ = \left[ - \cot \left( 30^\circ \right) \right] - \left[ 2\cos \left( 30^\circ \right) \right] - \frac{3}{4} \left[ cosec \left( 45^\circ \right) \right]^2 + 4 \left[ - \sin\left( 60^\circ \right) \right]^2 \]
\[ = - \cot \left( 30^\circ \right)-2\cos\left( 30^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \sin \left( 60^\circ \right) \right]^2 \]
\[ = - \sqrt{3}-\frac{2\sqrt{3}}{2} - \frac{3}{4} \left[ \sqrt{2} \right]^2 + 4 \left[ \frac{\sqrt{3}}{2} \right]^2 \]
\[ = - \sqrt{3} - \sqrt{3} - \frac{3}{2} + 3\]
\[ = \frac{3 - 4\sqrt{3}}{2}\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the general solutions of tan2 2x = 1.
Write the number of points of intersection of the curves
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[4 \sin^2 x = 1\], then the values of x are
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.
Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`
If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x