मराठी

Prove That: Tan 11 π 3 − 2 Sin 4 π 6 − 3 4 C O S E C 2 π 4 + 4 Cos 2 17 π 6 = 3 − 4 √ 3 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]

 

उत्तर

LHS = \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4}cose c^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6}\]
\[ = \tan\left( \frac{11\pi}{3} \right) - 2\sin\left( \frac{4\pi}{6} \right) - \frac{3}{4} \left[ cosec\left( \frac{\pi}{4} \right) \right]^2 + 4 \left[ \cos\left( \frac{17\pi}{6} \right) \right]^2 \]
\[ = \tan\left( \frac{11}{3} \times 180^\circ \right) - 2\sin\left( \frac{4}{6} \times 180^\circ \right) - \frac{3}{4} \left[ cosec\left( \frac{180^\circ}{4} \right) \right]^2 + 4 \left[ \cos\left( \frac{17 \times 180^\circ}{6} \right) \right]^2 \]
\[ = \tan \left( 660^\circ \right) - 2\sin \left( 120^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos \left( 510^\circ \right) \right]^2 \]
\[ = \tan \left( 660^\circ \right) - 2\sin \left( 120^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos \left( 510^\circ \right) \right]^2 \]
\[ = \tan \left( 90^\circ \times 7 + 30^\circ \right) - 2\sin \left( 90^\circ \times 1 + 30^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \cos\left( 90^\circ \times 5 + 60^\circ \right) \right]^2 \]
\[ = \left[ - \cot \left( 30^\circ \right) \right] - \left[ 2\cos \left( 30^\circ \right) \right] - \frac{3}{4} \left[ cosec \left( 45^\circ \right) \right]^2 + 4 \left[ - \sin\left( 60^\circ \right) \right]^2 \]
\[ = - \cot \left( 30^\circ \right)-2\cos\left( 30^\circ \right) - \frac{3}{4} \left[ cosec\left( 45^\circ \right) \right]^2 + 4 \left[ \sin \left( 60^\circ \right) \right]^2 \]
\[ = - \sqrt{3}-\frac{2\sqrt{3}}{2} - \frac{3}{4} \left[ \sqrt{2} \right]^2 + 4 \left[ \frac{\sqrt{3}}{2} \right]^2 \]
\[ = - \sqrt{3} - \sqrt{3} - \frac{3}{2} + 3\]
\[ = \frac{3 - 4\sqrt{3}}{2}\]
 = RHS
Hence proved .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Trigonometric Functions - Exercise 5.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 5 Trigonometric Functions
Exercise 5.3 | Q 2.6 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the general solution of cosec x = –2


If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].


If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]


If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]


If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]


Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]


If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


The value of \[\cos1^\circ \cos2^\circ \cos3^\circ . . . \cos179^\circ\] is

 

The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is

 

Find the general solution of the following equation:

\[\cos x = - \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\sin 2x = \frac{\sqrt{3}}{2}\]

Find the general solution of the following equation:

\[\tan x + \cot 2x = 0\]

Find the general solution of the following equation:

\[\tan 2x \tan x = 1\]

Find the general solution of the following equation:

\[\tan mx + \cot nx = 0\]

Find the general solution of the following equation:

\[\tan px = \cot qx\]

 


Find the general solution of the following equation:

\[\sin x = \tan x\]

Solve the following equation:

\[\cos 4 x = \cos 2 x\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3 = 0\]

Solve the following equation:

`cosec  x = 1 + cot x`


Solve the following equation:
\[\sin x - 3\sin2x + \sin3x = \cos x - 3\cos2x + \cos3x\]


Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0


Write the general solutions of tan2 2x = 1.

 

Write the number of points of intersection of the curves

\[2y = - 1 \text{ and }y = cosec x\]

If \[\tan px - \tan qx = 0\], then the values of θ form a series in

 


If \[4 \sin^2 x = 1\], then the values of x are

 


If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0


Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ


Solve the following equations:
cos 2θ = `(sqrt(5) + 1)/4`


Solve the following equations:
2cos 2x – 7 cos x + 3 = 0


Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.


Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`


If a cosθ + b sinθ = m and a sinθ - b cosθ = n, then show that a2 + b2 = m2 + n2 


Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×