Advertisements
Advertisements
प्रश्न
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
पर्याय
finite
infinite
one
no
उत्तर
no
Given equation:
\[3 \cos x + 4 \sin x = 6\] ...(i)
Thus, the equation is of the form
\[a \cos x + b \sin x = c\], where
\[a = 3, b = 4\] and c = 6.
Let: \[a = 3 = r \cos \alpha\] and \[b = 4 = r \sin \alpha\]
Now,
\[\tan \alpha = \frac{b}{a} = \frac{4}{3}\]
\[ \Rightarrow \alpha = \tan^{- 1} \left( \frac{4}{3} \right)\]
Also,
\[r = \sqrt{a^2 + b^2} = \sqrt{9 + 16} = \sqrt{25} = 5\]
On putting
\[a = 3 = r \cos \alpha\] and \[b = 4 = r \sin \alpha\] in equation (i), we get:
\[r \cos\alpha \cos\theta + \sin\alpha \sin\theta = 6\]
\[ \Rightarrow r \cos (\theta - \alpha ) = 6\]
\[ \Rightarrow 5 \cos (\theta - \alpha) = 6\]
\[ \Rightarrow \cos (\theta - \alpha) = \frac{6}{5}\]
From here, we cannot find the value of \[\theta\]
APPEARS IN
संबंधित प्रश्न
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\sin x = \frac{a^2 - b^2}{a^2 + b^2}\], then the values of tan x, sec x and cosec x
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If x sin 45° cos2 60° = \[\frac{\tan^2 60^\circ cosec30^\circ}{\sec45^\circ \cot^{2^\circ} 30^\circ}\], then x =
If sec x + tan x = k, cos x =
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.