Advertisements
Advertisements
प्रश्न
Solve the following equation:
उत्तर
Given:
\[\sin x + \cos x = 1\] ...(i)
Now,
\[\tan\alpha = \frac{b}{a} = 1 \Rightarrow \alpha = \frac{\pi}{4}\]
On putting
\[r \sin \alpha \sin x + r \cos \alpha \cos x = 1\]
\[\Rightarrow r \cos ( x - \alpha) = 1\]
\[ \Rightarrow \sqrt{2} \cos \left( x - \frac{\pi}{4} \right) = 1\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow \cos \left( x - \frac{\pi}{4} \right) = \cos \frac{\pi}{4}\]
\[ \Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}, n \in Z\]
On taking positive sign, we get:
\[x - \frac{\pi}{4} = 2n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{4} + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi + \frac{\pi}{2}, n \in Z\]
On taking negative sign, we get:
\[x - \frac{\pi}{4} = 2m\pi - \frac{\pi}{4}\]
\[ \Rightarrow x = 2m\pi, m \in Z\]
APPEARS IN
संबंधित प्रश्न
If \[\tan x = \frac{a}{b},\] show that
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[6 T_{10} - 15 T_8 + 10 T_6 - 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
Prove that:
If tan x + sec x = \[\sqrt{3}\], 0 < x < π, then x is equal to
If x is an acute angle and \[\tan x = \frac{1}{\sqrt{7}}\], then the value of \[\frac{{cosec}^2 x - \sec^2 x}{{cosec}^2 x + \sec^2 x}\] is
sin2 π/18 + sin2 π/9 + sin2 7π/18 + sin2 4π/9 =
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Write the solution set of the equation
If \[\cos x + \sqrt{3} \sin x = 2,\text{ then }x =\]
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Solve the following equations:
sin θ + cos θ = `sqrt(2)`
Choose the correct alternative:
If tan 40° = λ, then `(tan 140^circ - tan 130^circ)/(1 + tan 140^circ * tan 130^circ)` =
Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0