Advertisements
Advertisements
प्रश्न
Prove that
उत्तर
LHS = \[\frac{\sin \left( 180^\circ + x \right)\cos\left( 90^\circ + x \right) \tan \left( 270^\circ - x \right)\cot \left( 360^\circ - x \right)}{\sin \left( 360^\circ - x \right)\cos\left( 360^\circ + x \right)cosec\left( - x \right) \sin \left( 270^\circ + x \right)} \]
\[ = \frac{\sin \left( 90 \times 2^\circ + x \right)\cos\left( 90^\circ \times 1 + x \right) \tan\left( 90^\circ \times 3 - x \right) \cot\left( 90^\circ \times 4 - x \right)}{\sin\left( 90^\circ \times 4 - x \right)\cos\left( 90^\circ \times 4 + x \right) cosec \left( - x \right) \sin \left( 90^\circ \times 3 + x \right)}\]
\[ = \frac{- \sin x \left[ - \sin x \right] \cot x\left[ - \cot x \right]}{\left[ - \sin x \right] \cos x \left[ - cosec x \right]\left[ - \cos x \right]}\]
\[ = \frac{\sin^2 x \cot^2 x}{\sin x cosec x \cos x \cos x}\]
\[ = \frac{\sin^2 x \times \frac{\cos^2 x}{\sin^2 x}}{\sin x \times \frac{1}{\sin x} \times \cos^2 x}\]
\[ = \frac{\cos^2 x}{\cos^2 x}\]
\[ = 1\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
Find the general solution of the equation sin 2x + cos x = 0
Find the general solution for each of the following equations sec2 2x = 1– tan 2x
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
Prove the:
\[ \sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}} = - \frac{2}{\cos x},\text{ where }\frac{\pi}{2} < x < \pi\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = \[\frac{1}{2}\]
Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
In a ∆ABC, prove that:
Prove that:
\[\sin \frac{13\pi}{3}\sin\frac{2\pi}{3} + \cos\frac{4\pi}{3}\sin\frac{13\pi}{6} = \frac{1}{2}\]
Prove that:
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If A lies in second quadrant 3tan A + 4 = 0, then the value of 2cot A − 5cosA + sin A is equal to
If sec x + tan x = k, cos x =
If \[f\left( x \right) = \cos^2 x + \sec^2 x\], then
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sec x\cos5x + 1 = 0, 0 < x < \frac{\pi}{2}\]
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
If \[e^{\sin x} - e^{- \sin x} - 4 = 0\], then x =
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 sin2x + 1 = 3 sin x
Solve the following equations:
cos θ + cos 3θ = 2 cos 2θ
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
`(cos 6x + 6 cos 4x + 15cos x + 10)/(cos 5x + 5cs 3x + 10 cos x)` is equal to
Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x
The minimum value of 3cosx + 4sinx + 8 is ______.
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.