Advertisements
Advertisements
प्रश्न
Prove that
उत्तर
LHS = \[\frac{\sin \left( 180^\circ + x \right)\cos\left( 90^\circ + x \right) \tan \left( 270^\circ - x \right)\cot \left( 360^\circ - x \right)}{\sin \left( 360^\circ - x \right)\cos\left( 360^\circ + x \right)cosec\left( - x \right) \sin \left( 270^\circ + x \right)} \]
\[ = \frac{\sin \left( 90 \times 2^\circ + x \right)\cos\left( 90^\circ \times 1 + x \right) \tan\left( 90^\circ \times 3 - x \right) \cot\left( 90^\circ \times 4 - x \right)}{\sin\left( 90^\circ \times 4 - x \right)\cos\left( 90^\circ \times 4 + x \right) cosec \left( - x \right) \sin \left( 90^\circ \times 3 + x \right)}\]
\[ = \frac{- \sin x \left[ - \sin x \right] \cot x\left[ - \cot x \right]}{\left[ - \sin x \right] \cos x \left[ - cosec x \right]\left[ - \cos x \right]}\]
\[ = \frac{\sin^2 x \cot^2 x}{\sin x cosec x \cos x \cos x}\]
\[ = \frac{\sin^2 x \times \frac{\cos^2 x}{\sin^2 x}}{\sin x \times \frac{1}{\sin x} \times \cos^2 x}\]
\[ = \frac{\cos^2 x}{\cos^2 x}\]
\[ = 1\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
If \[\tan x = \frac{a}{b},\] show that
Prove that: \[\tan\frac{11\pi}{3} - 2\sin\frac{4\pi}{6} - \frac{3}{4} {cosec}^2 \frac{\pi}{4} + 4 \cos^2 \frac{17\pi}{6} = \frac{3 - 4\sqrt{3}}{2}\]
Prove that
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
In a ∆A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that cos(180° − A) + cos (180° + B) + cos (180° + C) − sin (90° + D) = 0
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
If tan \[x = - \frac{1}{\sqrt{5}}\] and θ lies in the IV quadrant, then the value of cos x is
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is
If tan θ + sec θ =ex, then cos θ equals
Which of the following is incorrect?
The value of \[\tan1^\circ \tan2^\circ \tan3^\circ . . . \tan89^\circ\] is
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
\[\sin x + \cos x = \sqrt{2}\]
Solve the following equation:
\[\sqrt{3} \cos x + \sin x = 1\]
Solve the following equation:
\[2 \sin^2 x = 3\cos x, 0 \leq x \leq 2\pi\]
Solve the following equation:
\[5 \cos^2 x + 7 \sin^2 x - 6 = 0\]
Solve the following equation:
4sinx cosx + 2 sin x + 2 cosx + 1 = 0
Solve the following equation:
3 – 2 cos x – 4 sin x – cos 2x + sin 2x = 0
Solve the following equation:
\[2^{\sin^2 x} + 2^{\cos^2 x} = 2\sqrt{2}\]
Write the number of solutions of the equation tan x + sec x = 2 cos x in the interval [0, 2π].
Write the number of points of intersection of the curves
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
If \[3\tan\left( x - 15^\circ \right) = \tan\left( x + 15^\circ \right)\] \[0 < x < 90^\circ\], find θ.
The general solution of the equation \[7 \cos^2 x + 3 \sin^2 x = 4\] is
A solution of the equation \[\cos^2 x + \sin x + 1 = 0\], lies in the interval
The number of solution in [0, π/2] of the equation \[\cos 3x \tan 5x = \sin 7x\] is
If \[\cos x = - \frac{1}{2}\] and 0 < x < 2\pi, then the solutions are
The number of values of x in the interval [0, 5 π] satisfying the equation \[3 \sin^2 x - 7 \sin x + 2 = 0\] is
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to
Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to