Advertisements
Advertisements
प्रश्न
Write the number of values of x in [0, 2π] that satisfy the equation \[\sin x - \cos x = \frac{1}{4}\].
उत्तर
Given equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]
Now,
\[(1 - \cos^2 x) - \cos x = \frac{1}{4}\]
\[ \Rightarrow 4 - 4 \cos^2 x - 4 \cos x = 1\]
\[ \Rightarrow 4 \cos^2 x + 4 \cos x - 3 = 0\]
\[ \Rightarrow 4 \cos^2 x + 6 \cos x - 2 \cos x - 3 = 0\]
\[ \Rightarrow 2 \cos x (2 \cos x + 3) - 1 (2 \cos x + 3) = 0\]
\[ \Rightarrow (2 \cos x + 3) ( 2 \cos x - 1) = 0\]
Here,
\[2 \cos x + 3 = 0\]
Or,
\[2 \cos x - 1 = 0\]
\[ \Rightarrow \cos x = \frac{1}{2}\]
\[ \Rightarrow \cos x = \cos \frac{\pi}{3}\]
\[ \Rightarrow x = 2n\pi \pm \frac{\pi}{3}\]
Taking positive sign,
\[x = \frac{7\pi}{3}, \frac{13\pi}{3}, \frac{19\pi}{3}, . . .\]
Taking negative sign,
`x=(5x)/3` and `(7x)/3`
will satisfy the given condition, i.e., x in [0, 2π].
Hence, two values will satisfy the given equation.
APPEARS IN
संबंधित प्रश्न
Find the general solution of cosec x = –2
Find the general solution of the equation sin 2x + cos x = 0
If \[x = \frac{2 \sin x}{1 + \cos x + \sin x}\], then prove that
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[\sin x + \cos x = m\], then prove that \[\sin^6 x + \cos^6 x = \frac{4 - 3 \left( m^2 - 1 \right)^2}{4}\], where \[m^2 \leq 2\]
Prove that:
Prove that
Prove that
Prove that:
\[\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2\]
Prove that:
\[\sec\left( \frac{3\pi}{2} - x \right)\sec\left( x - \frac{5\pi}{2} \right) + \tan\left( \frac{5\pi}{2} + x \right)\tan\left( x - \frac{3\pi}{2} \right) = - 1 .\]
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Prove that:
If \[cosec x + \cot x = \frac{11}{2}\], then tan x =
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
Write the number of points of intersection of the curves
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
The general value of x satisfying the equation
\[\sqrt{3} \sin x + \cos x = \sqrt{3}\]
The number of values of x in [0, 2π] that satisfy the equation \[\sin^2 x - \cos x = \frac{1}{4}\]
If \[\sqrt{3} \cos x + \sin x = \sqrt{2}\] , then general value of x is
The solution of the equation \[\cos^2 x + \sin x + 1 = 0\] lies in the interval
Solve the following equations for which solution lies in the interval 0° ≤ θ < 360°
2 cos2x + 1 = – 3 cos x
Solve the following equations:
sin 5x − sin x = cos 3
Solve the following equations:
sin θ + sin 3θ + sin 5θ = 0
Solve the following equations:
sin 2θ – cos 2θ – sin θ + cos θ = θ
Choose the correct alternative:
If cos pθ + cos qθ = 0 and if p ≠ q, then θ is equal to (n is any integer)
Choose the correct alternative:
If f(θ) = |sin θ| + |cos θ| , θ ∈ R, then f(θ) is in the interval
Solve the equation sin θ + sin 3θ + sin 5θ = 0
Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π.