Advertisements
Advertisements
प्रश्न
Solve the following equation:
cosx + sin x = cos 2x + sin 2x
उत्तर
\[\cos x + \sin x = \cos2x + \sin2x\]
\[ \Rightarrow \cos2x - \cos x + \sin2x - \sin x = 0\]
\[ \Rightarrow - 2\sin\frac{3x}{2}\sin\frac{x}{2} + 2\cos\frac{3x}{2}\sin\frac{x}{2} = 0\]
\[ \Rightarrow 2\sin\frac{x}{2}\left( \cos\frac{3x}{2} - \sin\frac{3x}{2} \right) = 0\]
\[ \Rightarrow 2 \sin\frac{x}{2} = 0\text{ or }\cos\frac{3x}{2} - \sin\frac{3x}{2} = 0\]
\[ \Rightarrow \sin\frac{x}{2} = 0\text{ or }\cos\frac{3x}{2} = \sin\frac{3x}{2}\]
\[ \Rightarrow \frac{x}{2} = n\pi\text{ or }\tan\frac{3x}{2} = 1\]
\[ \Rightarrow x = 2n\pi\text{ or }\tan\frac{3x}{2} = \tan\frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi\text{ or }\frac{3x}{2} = n\pi + \frac{\pi}{4}\]
\[ \Rightarrow x = 2n\pi\text{ or }3x = 2n\pi + \frac{\pi}{2}\]
\[ \Rightarrow x = 2n\pi\text{ or }x = \frac{2n\pi}{3} + \frac{\pi}{6}, n \in \mathbb{Z}\]
APPEARS IN
संबंधित प्रश्न
Find the principal and general solutions of the equation `tan x = sqrt3`
If \[\tan x = \frac{b}{a}\] , then find the values of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\].
If \[\tan x = \frac{a}{b},\] show that
If \[cosec x - \sin x = a^3 , \sec x - \cos x = b^3\], then prove that \[a^2 b^2 \left( a^2 + b^2 \right) = 1\]
If \[\cot x \left( 1 + \sin x \right) = 4 m \text{ and }\cot x \left( 1 - \sin x \right) = 4 n,\] \[\left( m^2 + n^2 \right)^2 = mn\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[\frac{T_3 - T_5}{T_1} = \frac{T_5 - T_7}{T_3}\]
If \[T_n = \sin^n x + \cos^n x\], prove that \[2 T_6 - 3 T_4 + 1 = 0\]
Prove that: tan 225° cot 405° + tan 765° cot 675° = 0
Prove that:
In a ∆ABC, prove that:
cos (A + B) + cos C = 0
Find x from the following equations:
\[cosec\left( \frac{\pi}{2} + \theta \right) + x \cos \theta \cot\left( \frac{\pi}{2} + \theta \right) = \sin\left( \frac{\pi}{2} + \theta \right)\]
Prove that:
\[\tan 4\pi - \cos\frac{3\pi}{2} - \sin\frac{5\pi}{6}\cos\frac{2\pi}{3} = \frac{1}{4}\]
Prove that:
If \[\frac{3\pi}{4} < \alpha < \pi, \text{ then }\sqrt{2\cot \alpha + \frac{1}{\sin^2 \alpha}}\] is equal to
If sec x + tan x = k, cos x =
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Find the general solution of the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
Solve the following equation:
`cosec x = 1 + cot x`
Solve the following equation:
\[\cot x + \tan x = 2\]
Write the number of solutions of the equation
\[4 \sin x - 3 \cos x = 7\]
If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Write the solution set of the equation
If \[2 \sin^2 x = 3\cos x\]. where \[0 \leq x \leq 2\pi\], then find the value of x.
If \[\tan px - \tan qx = 0\], then the values of θ form a series in
If \[4 \sin^2 x = 1\], then the values of x are
A value of x satisfying \[\cos x + \sqrt{3} \sin x = 2\] is
Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`
Solve the following equations:
2cos 2x – 7 cos x + 3 = 0
The minimum value of 3cosx + 4sinx + 8 is ______.