हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the principal solution and general solution of the following:sin θ = -12 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal solution and general solution of the following:
sin θ = `-1/sqrt(2)`

योग

उत्तर

sin θ = `-1/sqrt(2)`

We know that principal of sin θ lies in `[ - pi/2, pi/2]`

sin θ = `- 1/sqrt(2 < 0`

∴ The principal value of sin θ lies in the IV quadrant.

sin θ = `- 1/sqrt(2)`

= `- sin(pi/4)`

sin θ = `sin (- pi/4)`

Hence θ = `- pi/4` is the principal solution.

The general solution is

θ = nπ + (– 1)n . `( pi/4)`, n ∈ Z

θ = `"n"pi + (- 1)^("n" + 1) * pi/4`, n ∈ Z

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.8 [पृष्ठ १३३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.8 | Q 1. (i) | पृष्ठ १३३

संबंधित प्रश्न

If \[\tan x = \frac{a}{b},\] show that

\[\frac{a \sin x - b \cos x}{a \sin x + b \cos x} = \frac{a^2 - b^2}{a^2 + b^2}\]

Prove that:  tan 225° cot 405° + tan 765° cot 675° = 0


Prove that:
\[\frac{\cos (2\pi + x) cosec (2\pi + x) \tan (\pi/2 + x)}{\sec(\pi/2 + x)\cos x \cot(\pi + x)} = 1\]

 


Prove that

\[\frac{cosec(90^\circ + x) + \cot(450^\circ + x)}{cosec(90^\circ - x) + \tan(180^\circ - x)} + \frac{\tan(180^\circ + x) + \sec(180^\circ - x)}{\tan(360^\circ + x) - \sec( - x)} = 2\]

 


If \[0 < x < \frac{\pi}{2}\], and if \[\frac{y + 1}{1 - y} = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\], then y is equal to


If \[cosec x - \cot x = \frac{1}{2}, 0 < x < \frac{\pi}{2},\]

 

If \[cosec x + \cot x = \frac{11}{2}\], then tan x =

 


Find the general solution of the following equation:

\[cosec x = - \sqrt{2}\]

Find the general solution of the following equation:

\[\tan x = - \frac{1}{\sqrt{3}}\]

Solve the following equation:
\[\sin^2 x - \cos x = \frac{1}{4}\]


Solve the following equation:

\[\cos x + \cos 3x - \cos 2x = 0\]

Solve the following equation:

\[\cos x \cos 2x \cos 3x = \frac{1}{4}\]

Solve the following equation:

\[\sin x + \sin 2x + \sin 3x + \sin 4x = 0\]

If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.

 

Write the number of points of intersection of the curves

\[2y = 1\] and \[y = \cos x, 0 \leq x \leq 2\pi\].
 

If \[\cot x - \tan x = \sec x\], then, x is equal to

 


The equation \[3 \cos x + 4 \sin x = 6\] has .... solution.


Solve the following equations:
`sin theta + sqrt(3) cos theta` = 1


Choose the correct alternative:
If tan α and tan β are the roots of x2 + ax + b = 0 then `(sin(alpha + beta))/(sin alpha sin beta)` is equal to


Choose the correct alternative:
If sin α + cos α = b, then sin 2α is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×