Advertisements
Advertisements
प्रश्न
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
उत्तर
A + B + C = 180°
Given A = 90°
∴ B + C = 90°
⇒ `("B" + "C")/2` = 45°
`"B"/2 + "C"/2` = 45°
R.H.S = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
= `1 + sqrt(2) (2cos "B"/2 sin "C"/2)`
We know that 2 cosA sinB = sin(A + B) – sin(A – B)
= `- 1 + sqrt(2) (sin (("B" + "C"))/2 - sin (("B" - "C"))/2)`
= `- 1 + sqrt(2) (sin 45^circ - sin (("B" - "C"))/2)`
= `- 1 + sqrt(2) (1/sqrt(2) - sin (("B" - "C")^2)/2)`
= `- 1 + 1 - sqrt(2) sin (("B" - "C"))/2`
= `- sqrt(2) sin (("B" - "C"))/2` .....(1)
L.H.S = cos B – cos C
= `2 sin (("B" + "C"))/2 sin (("C" - "B"))/2`
= `2 sin 45^circ sin (("C" - "B"))/2`
= `2(1/sqrt(2)) sin ((-("B" - "C"))/2)`
= `- sqrt(2) sin (("B" - "C"))/2` .....(2)
From (1) and (2)
⇒ L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find the value of sin 105°
Prove that sin(π + θ) = − sin θ.
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
cos 5θ cos 2θ
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C