Advertisements
Advertisements
प्रश्न
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
उत्तर
sec β = ` 5/3`
sec2β – tan2β = 1
sec2β – 1 = tan2β
tan2β = `(- 5/3)^2 - 1`
= `25/9 - 1`
tan2β = `(25 - 9)/9`
= `16/9`
tan β = `+- 4/3`
Given that β lies in the second quadant.
tan β is negative.
∴ tan β = `- 4/3`
tan(α + β) = `(tan alpha + tan beta)/(1 - tan alpha tan beta)`
= `(2 - 4/3)/(1 - 2 xx (- 4/3))`
= `((6 - 4)/3)/(1 + 8/3)`
= `((6 - 4)/3)/((3 + 8)/3)`
tan(α + β) = `2/11`
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find the value of sin 105°
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a product
sin 50° + sin 40°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =