Advertisements
Advertisements
प्रश्न
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
उत्तर
L.H.S = cos(A + B) cos(A – B)
= (cos A cos B – sin A sin B)(cos A cos B + sin (A sin B)
= cos2A cos2B – sin2A sin2B
= cos2A (1 – sin2B) – (1 – cos2A) sin2B
= cos2A – cos2A sin2B – sin2B + cos2A sin2B
= cos2A – sin2B
= R.H.S
Now cos2A – sin2B = (1 – sin2A) – (1 – cos2B)
= 1 – sin2A – 1 + cos2B
= cos2B – sin2A
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of cot(660°)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =