हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A

योग

उत्तर

L.H.S = cos(A + B) cos(A – B)

= (cos A cos B – sin A sin B)(cos A cos B + sin (A sin B)

= cos2A cos2B – sin2A sin2B

= cos2A (1 – sin2B) – (1 – cos2A) sin2B

= cos2A – cos2A sin2B – sin2B + cos2A sin2B

= cos2A – sin2

= R.H.S

Now cos2A – sin2B = (1 – sin2A) – (1 – cos2B)

= 1 – sin2A – 1 + cos2B

= cos2B – sin2A

shaalaa.com
Trigonometric Functions and Their Properties
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.4 [पृष्ठ १०९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.4 | Q 17. (ii) | पृष्ठ १०९

संबंधित प्रश्न

Find the values of tan(1050°)


Find the values of cot(660°)


If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)


If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)


Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`


Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z


Prove that sin(A + B) sin(A – B) = sin2A – sin2B


Prove that cos 8θ cos 2θ = cos25θ – sin2


Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`


Find the value of cos 2A, A lies in the first quadrant, when tan A  `16/63`


If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`


Prove that `32(sqrt(3)) sin  pi/48  cos  pi/48  cos  pi/24  cos  pi/12  cos  pi/6` = 3


Express the following as a sum or difference
2 sin 10θ  cos 2θ


Express the following as a product
cos 65° + cos 15°


Show that sin 12° sin 48° sin 54° = `1/8`


Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x


If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C


If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cosB + cosC = 1


If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sinB + sinC = 1


Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) = 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×