Advertisements
Advertisements
Question
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Solution
L.H.S = cos(A + B) cos(A – B)
= (cos A cos B – sin A sin B)(cos A cos B + sin (A sin B)
= cos2A cos2B – sin2A sin2B
= cos2A (1 – sin2B) – (1 – cos2A) sin2B
= cos2A – cos2A sin2B – sin2B + cos2A sin2B
= cos2A – sin2B
= R.H.S
Now cos2A – sin2B = (1 – sin2A) – (1 – cos2B)
= 1 – sin2A – 1 + cos2B
= cos2B – sin2A
APPEARS IN
RELATED QUESTIONS
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of cos 105°.
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Prove that sin(π + θ) = − sin θ.
Find a quadratic equation whose roots are sin 15° and cos 15°
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a product
cos 65° + cos 15°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =