Advertisements
Advertisements
Question
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Solution
sin x + sin 2x + sin 3x = sin x + 2 sin x cos x + 3 sin x – 4 sin3 x
= sin x [1 + 2 cos x + 3 – 4 sin2 x]
= sin x [2 cos x + 4 – 4 sin2 x ]
= sin x [2 cosx + 4(1 – sin2x)]
= sin x [2 cos x + 4 cos2x]
= 2 sin x cos x [1 + 2 cos x]
= sin 2x (1 + 2 cosx)
APPEARS IN
RELATED QUESTIONS
Find the values of `tan ((19pi)/3)`
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a product
sin 75° sin 35°
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to