Advertisements
Advertisements
Question
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Solution
`((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta)) = ((cos 3theta -cos theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 6theta - cos 4theta))`
= `(2sin((3theta + theta)/2) sin ((theta - 3theta)/2) * 2sin((8theta + 20)/2) cos((8theta - 2theta)/2))/((2cos((5theta + theta)/2) * sin((5theta - theta)/2) * 2sin((6theta - 4theta)/2) sin((4theta - 6theta)/2)`
= `(sin 2theta* sin(- theta) *sin 5theta * cos 3theta)/(cos3theta * sin 2theta * sin 5theta * sin (- theta))`
= 1
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of sin 105°
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a sum or difference
sin 5θ sin 4θ
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =