Advertisements
Advertisements
Question
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
Solution
LH.S = `(1 - cos2"A")/2 + (1 - cos2"B")/2 - (1 - cos2"C")/2`
Hint: `[sin^2"A" = (1 - cos2"A")/2]`
= `[1/2 + 1/2 - 1/2] - 1/2 [cos2"A" + cos2"B" - cos 2"C"]`
= `1/2 - 1/2 [2cos("A" + "B") cos("A" - "B") - (2cos^2"C" - 1)]`
= `1/2 - cos("A" + "B") cos("A" - "B") + cos^2"C" - 1/2`
= cos C cos(A – B) + cos2C
= cos C [cos(A – B) – cos(A + B)]
= cos C [2 sin A sin B]
= 2 sin A sin B cos C
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of cos(300°)
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find the value of cos 105°.
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Show that tan 75° + cot 75° = 4
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a product
sin 50° + sin 40°
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =