Advertisements
Advertisements
Question
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Solution
sin(30° + θ) + cos(60° + θ) = cos θ
sin(30° + θ) + cos(60° + θ)
= sin 30° cos θ + cos 30° sin θ + cos 60° cos θ – sin 60° sin θ
= `1/2 cos theta + sqrt(3)/2 sin theta + 1/2 cos theta - sqrt(3)/2 sin theta`
= cos θ
APPEARS IN
RELATED QUESTIONS
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find the value of cos 105°.
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =