Advertisements
Advertisements
प्रश्न
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
उत्तर
sin(30° + θ) + cos(60° + θ) = cos θ
sin(30° + θ) + cos(60° + θ)
= sin 30° cos θ + cos 30° sin θ + cos 60° cos θ – sin 60° sin θ
= `1/2 cos theta + sqrt(3)/2 sin theta + 1/2 cos theta - sqrt(3)/2 sin theta`
= cos θ
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Prove that sin(π + θ) = − sin θ.
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Show that tan 75° + cot 75° = 4
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =