Advertisements
Advertisements
प्रश्न
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
उत्तर
Given A + B = 45°
tan(A + B) = tan 45°
`(tan "A" + tan "B")/(1 - tan "A" tan "B")` = 1
tan A + tan B = 1 – tan A . tan B ......(1)
(1 + tan A)(1 + tan B) = 1 + tan B + tan A + tan A tan B
= 1 + (tan A + tan B) + tan A tan B
= 1 + 1 – tan A tan B + tan A tan B ......(By equation (1))
= 2
APPEARS IN
संबंधित प्रश्न
Find the values of sin (– 1110°)
Find the values of `tan ((19pi)/3)`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that sin 105° + cos 105° = cos 45°
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
2 sin 10θ cos 2θ
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to