Advertisements
Advertisements
प्रश्न
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
उत्तर
cos5θ = cos(2θ + 3θ)
= cos 2θ cos 3θ – sin 2θ sin 3θ
= (2 cos2θ – 1)(4 cos3θ – 3 cos θ) – 2 sin θ cos θ(3 sin θ – 4 sin3θ)
= 8cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 sin2θ cos θ + 8 cos θ sin4θ
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6(1 – cos2θ) cos θ + 8 cos θ(1 – cos2θ)2
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 cos θ + 6 cos3θ + 8 cos 0(1+ cos4θ – 2 cos2θ)
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 cos θ + 6 cos3θ + 8 cos θ + 8 cos5θ – 16 cos3θ
= 16 cos5θ – 20 cos3θ + 5 cos θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
cos 35° – cos 75°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =