Advertisements
Advertisements
प्रश्न
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
उत्तर
sin 4α = sin 2(2α)
= `(2tan(2alpha))/(1 + tan^2 (2alpha))`
= `(2((2tan alpha)/(1 - tan^2 alpha)))/(1 + ((2 tan alpha)/(1 - tan^2 alpha))^2`
= `((4 tan alpha)/(1 - tan^2 alpha))/(((1 - tan^2 alpha)^2 + 4 tan^2 alpha)/(1 - tan^2 alpha)^2)`
= `(4 tan alpha (1 - tan^2 alpha))/(1 + tan^2 alpha - 2 tan^2 alpha + 4 tan^2 alpha)`
= `(4 tan alpha (1 - tan^2 alpha))/(1 + 2 tan^2 alpha + tan^4 alpha)`
sin 4α = `(4 tan alpha (1 - tan^2 alpha))/(1 + tan^2 alpha)^2`
APPEARS IN
संबंधित प्रश्न
Find the values of `sin (-(11pi)/3)`
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of cos 105°.
Prove that cos(π + θ) = − cos θ
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin 105° + cos 105° = cos 45°
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a product
sin 75° sin 35°
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =