Advertisements
Advertisements
Question
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Solution
sin 4α = sin 2(2α)
= `(2tan(2alpha))/(1 + tan^2 (2alpha))`
= `(2((2tan alpha)/(1 - tan^2 alpha)))/(1 + ((2 tan alpha)/(1 - tan^2 alpha))^2`
= `((4 tan alpha)/(1 - tan^2 alpha))/(((1 - tan^2 alpha)^2 + 4 tan^2 alpha)/(1 - tan^2 alpha)^2)`
= `(4 tan alpha (1 - tan^2 alpha))/(1 + tan^2 alpha - 2 tan^2 alpha + 4 tan^2 alpha)`
= `(4 tan alpha (1 - tan^2 alpha))/(1 + 2 tan^2 alpha + tan^4 alpha)`
sin 4α = `(4 tan alpha (1 - tan^2 alpha))/(1 + tan^2 alpha)^2`
APPEARS IN
RELATED QUESTIONS
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
sin 75° sin 35°
Express the following as a product
sin 50° + sin 40°
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =