Advertisements
Advertisements
Question
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Solution
Taking x = tan A, y = tan B and z = tan C
`(2x)/(1 - x^2) = (2tan"A")/(1 - tan^2"A")`
= tan 2A
Similarly, `(2y)/(1 - y^2) = tan 2"B"` and `(2z)/(1 - z^2)` = tan 2C
Given x + y + x = xyz
(i.e) we are given tan A + tan B + tan C = tan A tan B tan C
⇒ A+B+C = 180°
⇒ A + B = 180° – C
Multiply 2 on both sides
⇒ 2A + 2B = 360° – 2C
2(A + B) =360° – 2C
⇒ tan(2A + 2B) = tan(360° – 2C)
= – tan 2C
(i.e) `(tan 2"A" + tan 2"B")/(1 - tan 2"A" tan 2"B")` = – tan 2C
⇒ tan 2A + tan 2B = – tan 2C [1 – tan 2A tan 2B]
⇒ tan 2A + tan 2B = – tan 2C + tan 2A tan 2B tan 2C
⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
(i.e.) `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) xx (2y)/(1 - y^2) xx (2z)/(1 - z^2)`
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of `tan ((19pi)/3)`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a product
cos 35° – cos 75°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =