Advertisements
Advertisements
Question
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
Solution
`(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A")) = (sin{(4"A" - 2"B" + 4"B" - 2"A")/2} cos {(4"A" - 2"B" - 4"B" + 2"A")/2})/(cos{(4"A" - 2"B" + 4"B" - 2"A")/2} cos{(4"A" - 2"B" - 4"B" + 2"A")/2})`
= `(sin((2"A" + 2"B")/2) * cos((6"A" - 6"B")/2))/(cos((2"A" + 2"B")/2) * cos((6"A" - 6"B")/2)`
= `(sin("A" + "B"))/(cos("A" + "B"))`
= tan(A + B)
APPEARS IN
RELATED QUESTIONS
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Show that tan 75° + cot 75° = 4
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a sum or difference
sin 5θ sin 4θ
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =