Advertisements
Advertisements
Question
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Solution
Given A + B = 45°
tan(A + B) = tan 45°
`(tan "A" + tan "B")/(1 - tan "A" tan "B")` = 1
tan A + tan B = 1 – tan A . tan B ......(1)
(1 + tan A)(1 + tan B) = 1 + tan B + tan A + tan A tan B
= 1 + (tan A + tan B) + tan A tan B
= 1 + 1 – tan A tan B + tan A tan B ......(By equation (1))
= 2
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of `tan ((19pi)/3)`
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find the value of cos 105°.
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Show that tan 75° + cot 75° = 4
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C