Advertisements
Advertisements
Question
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Solution
we know sin2A + cos2A = 1
cos2 A = 1 – sin2A
= `1 - (4/5)^2`
= `1 - 16/25`
= `(25 - 16)/25`
= `9/25`
cos A = `+- sqrt(9/25)`
= `+- 3/5`
Since A lies in the first quadrant, cos A is positive
∴ cos A = `3/5`
cos 2A = cos2A – sin2A
= `(3/5)^2 - (4/5)^2`
= `9/25 - 16/25`
= `(9 - 16)/25`
= `(-7)/25`
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Prove that sin(π + θ) = − sin θ.
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 5θ sin 4θ
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =