Advertisements
Advertisements
Question
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Solution
`(pi/15 = 12^circ)`
L.H.S = cos 12° cos 24° cos 36° cos 48° cos 60° cos 72° cos 84° .....(1)
Consider (we know that)
cos A cos(60° + A) cos(60° – A)
= `cos "A" [cos^2 60^circ - sin^2"A"]`
= `cos "A"[1/4 - (1 - cos^2"A")]`
cos A cos(60° + A) cos(60° – A) = `1/4 cos 3"A"`
= `cos "A"[cos^2"A" - 3/4]`
= `(4cos^3 "A" - 3 cos "A")/4`
cos 12° cos 72° cos 48° = `1/4 cos 3(12^circ)`
= `1/4 cos 36^circ`
= `1/4[(sqrt(5) + 1)/4]`
Similarly cos 24° cos 84° cos 36° = `1/4 cos3 (12^circ)`
= `1/4 cos 72^circ`
= `1/4 cos(90^circ - 18^circ)`
= `1/4 sin 18^circ`
= `1/4[(sqrt(5) - 1)/4]`
(1) ⇒ L.H.S = `1/4[(sqrt(5) + 1)/4] * 1/4[(sqrt(5) - 1)/4] * 1/2`
= `1/4((sqrt(5) + 1)/4 * (sqrt(5) - 1)/4) * 1/2`
= `(5 - 1)/(128 xx 4)`
= `1/128`
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin 105° + cos 105° = cos 45°
Show that tan 75° + cot 75° = 4
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is