Advertisements
Advertisements
Question
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Solution
∠A = 90°, cos B = `"AB"/"BC"`, cos C = `"AC"/"BC"`
∴ L.H.S = cos2 B + cos2 C
= `"Ab"^2/"BC"^2 + "AC"^2/"BC"^2`
= `("AB"^2 + "AC"^2)/"BC"^2`
= `"BC"^2/"BC"^2`
= 1
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of tan `(7pi)/12`
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Express the following as a product
sin 50° + sin 40°
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is