Advertisements
Advertisements
Question
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Solution
sin x = `8/17`, 0 < x < `pi/2`
⇒ Where x is in I quadrant
∴ sin x, cos x are +ve
From ΔABX,
AX = `sqrt(17^2 - 8^2)`
= `sqrt((17 + 8)(17 - 8))`
= `sqrt((25)(9))`
= 5 × 3
= 15
∴ sin x = `8/17` and cos x = `15/17`
cos y = `- 24/25, pi < y < (3pi)/2`
⇒ Where y is in III quadrant
So, sin y and cos y are –ve
From ΔALY,
AL = `sqrt(25^2 - 24^2)`
= `sqrt(49)`
= 7
∴ cos y = `- 24/25` and sin y = `- 7/25`
sin(x – y) = sin x cos y – cos x sin y
= `(8/17)(- 24/25) - (15/17)(- 7/25)`
= `- 192/425 + 105/425`
= `- 87/425`
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Show that tan 75° + cot 75° = 4
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is