Advertisements
Advertisements
Question
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Solution
cos(30° – A) cos(30° + A) + cos(45° – A) . cos(45° + A)
= cos(30° + A) cos(30° – A) + cos(45° + A) cos(45° – A)
= `1/2`[cos(30° + A + 30° – A) + cos(30° + A – (30° + A ))] + `1/2`[cos(45° + A + 45° – A) + cos(45° + A – (450 + A))
= `1/2`[cos 60° + cos(30° + A – 30° + A)] + `1/2`[cos 90° + cos(45° + A – 45° + A)]
= `1/2`[cos 60° + cos 2A] + `1/2`[cos 90° + 2A]
= `1/2 cos 60^circ + 1/2 cos 2"A" + 1/ cos 90^cir + 1/2 cos 2"A"`
= `1/2 xx 1/2 + cos 2"A" +1/2 xx 0`
= `1/4 + cos 2"A"`
APPEARS IN
RELATED QUESTIONS
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of sin 105°
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a sum or difference
sin 5θ sin 4θ
Express the following as a product
cos 35° – cos 75°
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =