Advertisements
Advertisements
प्रश्न
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
उत्तर
cos(30° – A) cos(30° + A) + cos(45° – A) . cos(45° + A)
= cos(30° + A) cos(30° – A) + cos(45° + A) cos(45° – A)
= `1/2`[cos(30° + A + 30° – A) + cos(30° + A – (30° + A ))] + `1/2`[cos(45° + A + 45° – A) + cos(45° + A – (450 + A))
= `1/2`[cos 60° + cos(30° + A – 30° + A)] + `1/2`[cos 90° + cos(45° + A – 45° + A)]
= `1/2`[cos 60° + cos 2A] + `1/2`[cos 90° + 2A]
= `1/2 cos 60^circ + 1/2 cos 2"A" + 1/ cos 90^cir + 1/2 cos 2"A"`
= `1/2 xx 1/2 + cos 2"A" +1/2 xx 0`
= `1/4 + cos 2"A"`
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find the value of tan `(7pi)/12`
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
sin 75° sin 35°
Express the following as a product
sin 50° + sin 40°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B