Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
उत्तर
We know that cos2θ + sin2θ = 1
`cos^2theta + (- 2/3)^2` = 1
`cos^2theta + 4/9` = 1
cos2θ = `1 - 4/9`
cos2θ = `(9 - 4)/9 = 5/9`
cos θ = `+- sqrt(5)/3`
Since θ lies in the fourth quadrant cos θ is positive.
cos θ = `sqrt(5)/3`
sin θ = `- 2/3`, cosec θ = `1/sintheta = - 3/2`
cos θ = `sqrt(5)/3`, sec θ = `1/costheta = 3/sqrt(5)`
tan θ = `sintheta/costheta = (-2/3)/(sqrt(5)/3) = - 2/sqrt(5)`
cot θ = `1/tantheta = - sqrt(5)/2`
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Show that tan 75° + cot 75° = 4
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =