Advertisements
Advertisements
प्रश्न
Show that tan 75° + cot 75° = 4
उत्तर
tan 75° = tan(45° + 30°)
= `(tan45^circ + tan30^circ)/(1 - tan45^circ tan30^circ)`
= `(1 + 1/sqrt(3))/(1 - 1/sqrt(3))`
= `((sqrt(3) + 1)/sqrt(3))/((sqrt(3) - 1)/sqrt(3))`
= `(sqrt(3) + 1)/(sqrt(3) - 1)`
cot 75° = `1/tan75^circ`
= `(sqrt(3) - 1)/(sqrt(3) + 1)`
So, L.H.S = tan 75° + cot 75°
= `(sqrt(3) + 1)/(sqrt(3) - 1) + (sqrt(3) - 1)/(sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/((sqrt(3) - 1)(sqrt(3) + 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(sqrt(3)^2 - 1^2)`
= `8/(3 - 1)`
= `8/2`
= 4
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin (– 1110°)
Find the values of `sin (-(11pi)/3)`
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find the value of sin 105°
Prove that cos(π + θ) = − cos θ
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Express the following as a sum or difference
2 sin 10θ cos 2θ
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`