Advertisements
Advertisements
Question
Show that tan 75° + cot 75° = 4
Solution
tan 75° = tan(45° + 30°)
= `(tan45^circ + tan30^circ)/(1 - tan45^circ tan30^circ)`
= `(1 + 1/sqrt(3))/(1 - 1/sqrt(3))`
= `((sqrt(3) + 1)/sqrt(3))/((sqrt(3) - 1)/sqrt(3))`
= `(sqrt(3) + 1)/(sqrt(3) - 1)`
cot 75° = `1/tan75^circ`
= `(sqrt(3) - 1)/(sqrt(3) + 1)`
So, L.H.S = tan 75° + cot 75°
= `(sqrt(3) + 1)/(sqrt(3) - 1) + (sqrt(3) - 1)/(sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/((sqrt(3) - 1)(sqrt(3) + 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(sqrt(3)^2 - 1^2)`
= `8/(3 - 1)`
= `8/2`
= 4
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of tan `(7pi)/12`
Find a quadratic equation whose roots are sin 15° and cos 15°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a product
sin 50° + sin 40°
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to