Advertisements
Advertisements
Question
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
Solution
`sin theta/2 sin (7theta)/2 = 1/2[2sin theta/2 sin (7theta)/2]`
= `1/2[cos (7theta - theta)/2 - cos (7theta + theta)/2]`
= `1/2(cos 3theta - cos 4theta)`
`sin (3theta)/2 sin (11theta)/2 = /2[2sin (3theta)/2 sin (11theta)/2]`
= `1/2[cos (11theta - 3theta)/2 - cos (11theta + 3theta)/2]`
= `1/2[cos4theta - cos7theta]`
L.H.S = `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2`
= `1/2[cos 3theta - cos 4theta) + 1/2[cos 4theta- cos 7theta]`
= `1/2[cos 3theta - cos 4theta + cos 4theta - cos 7theta]`
= ``1/2[cos3theta - cos 7theta]`
= `1/2[sin (7theta + 3theta)/2 sin (7theta - 3theta)/2]`
= sin 5θ sin 2θ
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Express the following as a sum or difference
sin 35° cos 28°
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =