Advertisements
Advertisements
Question
Find the values of `sin (-(11pi)/3)`
Solution
`sin (-(11pi)/3) = - sin (11pi)/3`
= `- sin 11/3 xx 180`
= `- sin 11/3 xx 360/2`
= `- sin 360^circ (11/6)`
= `- sin 360^circ (2 - 1/6)`
= `- [sin(360^circ xx 2) - 360^circ/6]`
= – (– sin 60°)
= `sqrt(3)/2`
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of tan `(7pi)/12`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a product
sin 75° sin 35°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C