Advertisements
Advertisements
Question
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Solution
`cos (pi/4 + theta/2)`, when sin θ = `8/9`
`cos (pi/4 + theta/2) = sqrt((1 + cos2 (pi/4 + theta/2))/2`
= `sqrt((1 + cos (pi/2 + theta))/2`
= `sqrt((1 - sin theta)/2`
= `sqrt((1 - 8/9)/2`
= `sqrt((9 - 8)/18`
= `sqrt(1/18)`
= `sqrt(1/(9 xx 2))`
= `1/(3sqrt(2))`
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Find the value of cos 105°.
Find the value of tan `(7pi)/12`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Express the following as a sum or difference
sin 5θ sin 4θ
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1