Advertisements
Advertisements
Question
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Solution
cos θ = `1/2 ("a" + 1/"a")`
cos 3θ = 4 cos3θ – 3 cos θ
= `4[1/2("a" + 1/"a")]^3 - 3[1/2("a" + 1/"a")]`
= `4 xx 1/8("a" + 1/"a")^3 - 3/2("a" + 1/"a")`
= `1/2("a" + 1/"a")^3 - 3/2("a" + 1/"a")`
= `1/2["a"^3 + 3"a"^2(1/"a") + 3"a"(1/"a")^2 + 1/"a"^3] - 3/2(a" + 1/"a")`
= `1/2["a"^3 + 3"a" + 3/"a" + 1/"a"^3] - 3/2"a" - 3/(2"a")`
= `1/2 "a"^3 + 3/2"a" + 3/(2"a") + 1/(2"a"^3) - 3/2"a" - 3/(2"a")`
cos 3θ = `1/2"a"^3 + 1/(2"a"^3)`
= `1/2("a"^3 + 1/"a"^3)`
APPEARS IN
RELATED QUESTIONS
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of sin 105°
Prove that cos(π + θ) = − cos θ
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
2 sin 10θ cos 2θ
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`