Advertisements
Advertisements
Question
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Solution
`tan (pi/4 + theta) - tan(pi/4 - theta)` = `(tan pi/4 + tan theta)/(1 - tan pi/4 tan theta) - (tan pi/4 - tan theta)/(1 + tan pi/4 tan theta)`
= `(1 + tan theta)/(1 - tan theta) - (1 - tan theta)/(1 + tan theta)`
= `((1 + tan theta)^2 - (1 - tan theta)^2)/((1 - tan theta) (1 + tan theta))`
= `((1 + 2 tan theta + tan^2theta) - (1 - 2 tan theta + tan^2theta))/(1 - tan^2theta)`
= `(1 + 2 tan theta + tan^2theta - 1 + 2tan theta - tan^2theta)/(1 - tan^2theta)`
= `(4 tan theta)/(1 - tan^2theta)`
= `2 * (2 tan theta)/(1 - tan^2theta)`
= 2 tan 2θ
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Prove that sin(π + θ) = − sin θ.
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a sum or difference
sin 5θ sin 4θ
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to