Advertisements
Advertisements
Question
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Solution
1 + tan 44° = 1 + tan(45° – 1°)
=
=
=
=
(1 + tan 1°)(1 + tan 44°) = 2
Similarly (1 + tan 2°)(1 + tan 43°) = 2
(1 + tan 3°)(1 + tan 42°) = 2
(1 + tan 22°)(1 + tan 23°) = 2
= (1 + tan 1°)(1 + tan 2°) … (1 + tan 44°)
= 2 × 2 × … 22 times
It is a multiple of 4.
APPEARS IN
RELATED QUESTIONS
Find the values of
Find the values of
Find the value of the trigonometric functions for the following:
sec θ =
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C =
Show that tan 75° + cot 75° = 4
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that cot(A + B) =
Find the value of cos 2A, A lies in the first quadrant, when tan A
If cos θ =
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
cos 35° – cos 75°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that
Show that cot(A + 15°) – tan(A – 15°) =
Choose the correct alternative:
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =
Choose the correct alternative:
Let fk(x) =