Advertisements
Advertisements
प्रश्न
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
उत्तर
1 + tan 44° = 1 + tan(45° – 1°)
= ` 1 + (tan 45^circ - tan 1^circ)/(1 - tan 45^circ tan 1^circ)`
= `1 + (1 - tan 1^circ)/(1 + tan 1^circ)`
= `(1 + tan 1^circ + 1 - tan 1^circ)/(1 - 1 tan 1^circ)`
= `2/(1 - 1 tan 1^circ)`
(1 + tan 1°)(1 + tan 44°) = 2
Similarly (1 + tan 2°)(1 + tan 43°) = 2
(1 + tan 3°)(1 + tan 42°) = 2
(1 + tan 22°)(1 + tan 23°) = 2
= (1 + tan 1°)(1 + tan 2°) … (1 + tan 44°)
= 2 × 2 × … 22 times
It is a multiple of 4.
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 35° cos 28°
Show that sin 12° sin 48° sin 54° = `1/8`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is