Advertisements
Advertisements
प्रश्न
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
उत्तर
Now sin(s – A) sin(s – B) = `1/2 {cos[("s" - "A") - ("s" - "B")] - cos[("s" - "A") + ("s" - "B")]}`
= `1/2cos("s" - "A" - "s" + "B") - cos[2"s" - ("A" + "B")]`
= `1/2 {cos("A" - "B) - cos"C"}` .....[∴ cos(A – B) = cos(B – A)]
Again sin s sin s – C = `1/2[cos"C" - cos("A" + "B")`
So, L.H.S = `1/2 {cos("A" - "B") - cos"C" + cos"C" - cos("A" + "B")}`
= `1/2 [cos("A" - "B") - cos("A" + "B")`
= `1/2 [2sin"A" sin"B"]`
= sin A sin B
= R.H.S
APPEARS IN
संबंधित प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find the value of sin 105°
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a sum or difference
cos 5θ cos 2θ
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =