Advertisements
Advertisements
प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
उत्तर
In the diagram ON = `5/7`
PN = `(2sqrt(6))/7`
ON2 + NP2 = OP2
(i.e) `25/49 + 24/49 = 49/49` = OP2
⇒ OP = 1
sin θ = `"PN"/"OP"`
= `(2sqrt(6)/7)/1`
= `(2sqrt(6))/7`
cos θ = `"ON"/"OP"`
= `(5/7)/1`
= `5/7`
tan θ = `"PN"/"ON"`
= `((2sqrt(6))/7)/(5/7)`
= `(2sqrt(6))/5`
cosec θ = `1/sintheta = 7/(2sqrt(6))`
sec θ = `1/costheta = 7/5`
cot θ = `1/tantheta = 5/(2sqrt(6))`
APPEARS IN
संबंधित प्रश्न
Find the values of sin (– 1110°)
Find the values of `sin (-(11pi)/3)`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
cos 65° + cos 15°
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =