Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
उत्तर
We know sin2θ + cos2θ = 1
`sin^2theta + (-1/2)^2` = 1
`sin^2theta + 1/4` = 1
sin2θ = `1 - 1/4 = 3/4`
sin θ = `+- sqrt(3)/2`
sin θ = `- sqrt(3)/2`,
cosec θ = `- 2/sqrt(3)`
tan θ = `sintheta/costheta = (-sqrt(3)/2)/(- 1/2) = sqrt(3)`
cot θ = `1/tantheta = 1/sqrt(3)`
sec θ = `1/costheta = 1/(-1/2)` = – 2
APPEARS IN
संबंधित प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of sin 105°
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
sin 75° sin 35°
Express the following as a product
cos 35° – cos 75°
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is