Advertisements
Advertisements
प्रश्न
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
उत्तर
`(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x) = (1/2 [sin 9x + sin 7x] - 1/2 [sin 9x + sin 3x])/(1/2 [cos 3x + cos x] - 1/2 [cos x - cos 3x])`
= `(sin 9x + sin 7x - sin 9x - sin 3x)/(cos 3x + cos x - cos x + cos 7x)`
= `(sin 7x - sin 3x)/(cos 3x + cos 7x)`
= `(sin 7x - sin 3x)/(cos 7x + cos 3x)`
= `(2cos((7x + 3x)/2) * sin ((7x 3x)/2))/(2cos((7x + 3x)/2) * cos((7x - 3x)/2)`
= `(2 cos 5x * sin 2x)/(2 cos 5x * cos 2x)`
= `(sin 2x)/(cos 2x)`
= tan 2x
APPEARS IN
संबंधित प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find the value of sin 105°
Find the value of tan `(7pi)/12`
Show that tan 75° + cot 75° = 4
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Express the following as a sum or difference
sin 35° cos 28°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =